首页 > 留学知识库

问题: 请教一道高一数学题

已知α∈(0,π/4)β∈(π/4,3π/4),且cos(π/4-α)=3/5,sin(5π/4+β)=-5/13,求sin(α+β)的值.
这是一道关于三角函数的题,颇有难度,高手请进!!!

解答:

已知α∈(0,π/4),β∈(π/4,3π/4),且cos(π/4-α)=3/5,sin(5π/4+β)=-5/13,求sin(α+β)的值.

α∈(0,π/4)--->π/4-α∈(0,π/4)
cos(π/4-α)=3/5--->sin(π/4-α)=4/5
β∈(π/4,3π/4)---->π/4+β∈(π/2,π)
-sin(5π/4+β)=5/13=sin(π/4+β)--->cos(π/4+β)=-12/13

sin(α+β) = sin[(π/4+β)-(π/4-α)]
     = sin(π/4+β)cos(π/4-α)-cos(π/4+β)sin(π/4-α)
     = (5/13)(3/5)-(-12/13)(4/5)
     = 15/65+48/65
     = 63/65