首页 > 留学知识库

问题: 函数

求函数Y=(1+sinx)(1+cosx)的最大值和最小值

解答:

求函数y=(1+sinx)(1+cosx)的最大值和最小值.
解:y=(1+sinx)(1+cosx)
=1+sinx+cosx+sinxcos
设t=sinx+cosx,则t= sin(x+ )
∴|t|≤
由(sinx+cosx)2=sin2x+2sinxcosx+cos2x,
∴t2=1+2sinxcosx,∴sinxcosx=
∴y=1+t+ = (t2+2t+1)= (t+1)2
(1)当(1)t=-1时,y最小值=0
(2)当(1)t= 时,y最大值= ( +1)2= +

说明:sinx±cosx与sinxcosx有密切联系,可以互相转换,可以说解题离不开转换,所以应掌握常用的转换方法,可把多元问题转化为一元问题来解.