问题: 轨迹方程
AB是抛物线Y^2=2PX上的动弦.P为点O在AB上的射影.如果AB满足:|OP|^2=|PAl*lPB|求以OP为一边以∠OPA为内角的正方形OPQR的顶点R的轨迹方程
解答:
AB是抛物线y²=2px上的动弦.P为点O在AB上的射影.如果AB满足|OP|²=|PA|*|PB|,
求以OP为一边以∠OPA为内角的正方形OPQR的顶点R的轨迹方程
设:A(2pa²,2pa), B(2pb²,2pb), a≠b
|OP|²=|PA|*|PB|--->OA⊥OB
--->(2pa²,2pa)·B(2pb²,2pb) = (2p)²(a²b²+ab) = 0--->ab=-1
k(AB)=(2pa-2pb)/(2pa²-2pb²)=1/(a+b)
AB中点M(p(a²+b²),p(a+b)),
直线AMB方程:[y-p(a+b)](a+b)=[x-p(a²+b²)]
--->x-(a+b)y=-p(a+b)²+p(a²+b²)=-2abp=2p--->AB恒过M(2p,0)
设:R(x,y),P为R绕原点顺时针旋转90°而成
--->(x,y)·(xP,yP) = 0--->xxP+yyP=0
x²+y²=xP²+yQ²--->xP=y>0,yP=-x,即:P(y,-x)
OP⊥AB,P在AB上--->k(MP)*k(OP)=-1--->[(-x)/(y-2p)](-x/y)=-1
--->x²=-y(y-2p)=-y²+2py=-(y-p)²+p²
--->x²+(y-p)²=p² .......轨迹为圆(除去原点)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。