问题: 设两个向量则m/n的取值范围是
设两个向量a=(m+1,m^2-(sinB)^2)
b=(n-1/2,m/2+cosB),其中m,n.B为实数,若
a=2b,则m/n的取值范围是
解答:
a=2b
a=(m+1,m^2-(sinB)^2)
2b=(n-1,n+2cosB),
m+1=n-1 2+m=n (1)
m^2-(sinB)^2=n+2cosB
m^2-n=2cosB+1-cos^B=-(cosB-1)^+2
-2<=-(cosB-1)^+2<=2
-2<=m^2-n<=2, -2<=m^2-m-2<=2,
解得:(1-√17)/2<=m<=0或1<=m<=(1+√17)/2
m/n=m/(m+2)=1-[2/(m+2)]
(1-√17)/2<=m<=0,为增函数
-(5+√17)/2<=m/n<=0
1<=m<=(1+√17)/2
1/3<=m/n<=(√17-3)/2
m/n的取值范围是【-(5+√17)/2,0】并【1/3,(√17-3)/2】
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。