问题: 将曲线y=2sin(x+π/4)cox(x-π/4)和直线
将曲线y=2sin(x+π/4)cox(x-π/4)和直线y=1/2在y轴右侧的交点按横坐标从小到大依次记为P1、P2、P3、,...,则│P2P4│=________
解答:
解:y=2sin(x+π/4)cos(x-π/4)
=2sin(x+π/4)cos(x+π/4-π/2)
=2sin²(x+π/4)
=1-cos2(x+π/4)
=1-cos(2x+π/2)
=1+sin2x
令1+sin2x=1/2,即sin2x=-1/2,2x=kπ+[(-1)^k](-π/6)
故x=kπ/2+[(-1)^k](-π/12)=(π/12)[6k-(-1)^k]
x>0,解得k=1,2,……,故
P2=11π/12,P4=23π/12,
故|P2P4|=π(其实就是y=1+sin2x的一个周期)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。