问题: 来啊
tanA,tanB满足函数7x^2-8x+1=0,求tan((A+B)/2)
解答:
解:∵tanA,tanB满足函数7x^2-8x+1=0
∴tanA,tanB是方程7x^2-8x+1=0的两个实数根
∵tanA+tanB=8/7
tanAtanB=1/7
∴tan(A+B)=(tanA+tanB)/(1-tanAtanB)
=(8/7)/[1-(1/7)]=8/6=4/3
tan(A+B)=2tan[(A+B)/2] /{1-tan^[(A+B)/2]}=4/3
2-2tan^[(A+B)/2]}=3tan[(A+B)/2]
2tan^[(A+B)/2]}+3tan[(A+B)/2]-2=0
tan[(A+B)/2]=-2 or tan[(A+B)/2]=1/2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。