首页 > 留学知识库

问题: 高一数学!!!

已知cos(α-β/2)=-1/9,sin(α/2-β)=2/3,
且π/2<α<π,0<β<π/2,求cos(α+β)的值

解答:

pi/2<a<pi,0<b<pi/2--->0<b/2<pi/4--->pi/4<a-b/2<pi,cos(a-b/2)=-1/9
--->sin(a-b/2)=4√5/9
pi/2<a<pi,0<b<pi/2--->pi/4<a/2<pi/2,-pi/2<-b<0--->-pi/4<a/2-b<pi/2,sin(a/2-b)=2/3
--->cos(a/2-b)=√5/3

cos[(a+b)/2]=cos[(a-b/2)-(a/2-b)]
=cos(a-b/2)cos(a/2-b)+sin(a-b/2)sin(b/2-b)
=-1/9*√5/3-4√5/9*2/3
=-√5/3.
所以cos(a+b)=2{cos[(a+b)/2]}^2-1=2(√5/3)^2-1=1/9.