首页 > 留学知识库

问题: 圆锥曲线

求以椭圆x^2/25+y^2/16=1的长轴为底边的内接梯形的最大面积

解答:

椭圆上的任意一点是P(5cost,4sint),Q(-5cost,4sint)
则梯形的的下底为2a=2*5=10,上底为2*5cost,高是4sint,面积
S=4sint(10+10cost)/2
=20sint(1+cost)
=20*2sin(t/2)cos(t/2)*2[cos(t/2)]^2
=80sin(t/2)[cos(t/2)]^3
--->S^2=6400[sin(t/2)]^2*[cos(t/2)]^6
=6400/3*{3[sin(t/2)]^2*[cos(t/2)]^2*[cos(t/2)]^2*[cos(t/2)]^2}
=<(6400/3){3[cos(t/2)]^2+3[sin(t/2)]^2]/4}^4
=(6400/3)*(3/4)^4
=25*27=675
--->S=<15√3 所以内接梯形的最大面积是15√3.