首页 > 留学知识库

问题: 两角和与差的正弦、余弦、正切

已知sin(A+B)=1/3,sin(A-B)=1/5,则tanA*(1/tanB)=?

解答:

已知sin(A+B)=1/3,sin(A-B)=1/5,则tanA*(1/tanB)=?
解:sin(A+B)=sinAcosB+cosAsinB=1/3,..........(1)
sin(A-B)=sinAcosB-cosAsinB=1/5,..............(2)
(1)+(2):2sinAcosB=8/15.......................(3)
(1)-(2):2cosAsinB=2/15.......................(4)
(3)÷(4):2sinAcosB/2cosAsinB=4,即
sinAcosB/cosAsinB=4,即
tanA*(1/tanB)=4