首页 > 留学知识库

问题: 最小值

A是椭圆x^2+2y^2=12长轴上的点。过A的直线m交椭圆于P,Q两点.若不论m倾角如何变化1/|AP|^2 + 1/|AQ|^2总是定值
试求(1)A的坐标
(2)|AP|^2+|AQ|^2的最小值

解答:

A是椭圆x²+2y²=12长轴上的点。过A的直线m交椭圆于P,Q两点.若不论m倾角如何变化1/|AP|²+1/|AQ|²总是定值
试求(1)A的坐标;(2)|AP|²+|AQ|²的最小值

(1)x²+2y²=12--->a²=12
设:A(t,0),-2√3<t<2√3
如果PQ不是长轴,设直线m方程:ky=x-t
与椭圆方程联立:(ky+t)²+2y²=12--->(k²+2)y²+2kty+t²-12=0
--->yP+yQ=-2kt/(k²+2), yPyQ=(t²-12)/(k²+2)
--->|AP|²=(1+k²)yP², |AQ|²=(1+k²)yQ²
1/|AP|²+1/|AQ|² = (yP²+yQ²)/[(yPyQ)²(1+k²)]
        = [(yP+yQ)²-2yPyQ]/[(yPyQ)²(1+k²)]
        = [(yP+yQ)/(yPyQ)]²/(1+k²)-2/[(yPyQ)(1+k²)]
=(4k²t²)/[(t²-12)²(1+k²)] - 2(k²+2)/[(t²-12)(1+k²)]
=4[(k²+1)t²-t²]/[(t²-12)²(1+k²)]-2(1+k²+1)/[(t²-12)(1+k²)]
=4t²/(t²-12)²-4t²/[(t²-12)²(1+k²)]-2/[(t²-12)(1+k²)]-2/(t²-12)
=[4t²-2(t²-12)]/(t²-12)²-[4t²+2(t²-12)]/[(t²-12)²(1+k²)]
=[2t²+24]/(t²-12)²-[6t²-24)]/[(t²-12)²(1+k²)]
=定值(与k无关)
--->6t²-24=0--->t²=4--->t=±2--->A(±2,0)
此时:1/|AP|²+1/|AQ|² = (8+24)/(4-12)² = 1/2

如果此时PQ时长轴:|AP|=2√3+2,|AQ|=2√3-2
--->1/|AP|²+1/|AQ|² = (2-√3)/8 + (2+√3)/8 = 1/2,也成立

(2)--->|yP+yQ|=|4k/(k²+2)|, yPyQ=-8/(k²+2)
|AP|²+|AQ|² = (1+k²)(yP²+yQ²)
      = (1+k²)[(yP+yQ)²-2yPyQ]
      = (1+k²)[16k²/(k²+2)²+16/(k²+2)]
      = 16(1+k²)(k²+k²+2)/(k²+2)²
      = 32(1+k²)²/(k²+2)²
      = 32[1-1/(k²+2)]²
      ≥8
--->k=0即:PQ⊥x轴时,|AP|²+|AQ|²的最小值=8