首页 > 留学知识库

问题: 数学 三角函数

问5.6.12三题
谢谢帮忙!

解答:

6解: ∵π<θ<π/2 ∴π/2<θ/2<π/4
∵在第一象限中,正弦为增函数,余弦为减函数,
且sin(π/4)=cos(π/4)
∴sin(θ/2)>cos(θ/2)
5解:
1-sinx=[sin(x/2)]^-2sin(x/2)cos(x/2)+[cos(x/2)]^
=[sin(x/2)-cos(x/2)]^
√(1-sinx)=|sin(x/2)-cos(x/2)|
√(1+sinx)=|sin(x/2)+cos(x/2)|
1-cosx=1-[1-2sin^(x/2)]
√(1-cosx)=(√2)|sin(x/2)|
1+cosx=1-[2cos^(x/2)+1]
√(1+cosx)=(√2)|cos(x/2)|
原式={√[(1-sinx)/(1+sinx)]-√[(1+sinx)/(1-sinx)]}{√[(1-cosx)/(1+cosx)]-√[(1+cosx)/(1-cosx)]}
=[|sin(x/2)-cos(x/2)|/|sin(x/2)+cos(x/2)|-|sin(x/2)+cos(x/2)|/|sin(x/2)-cos(x/2)|][|tan(x/2)|-|
cot(x/2)|]
当x∈[nπ+π/2,(n+1)π]时: sin(x/2)>cos(x/2) tan(x/2)>0cot(x/2)>0
原式=[sin(x/2)-cos(x/2)]/[sin(x/2)+cos(x/2)]-[sin(x/2)+cos(x/2)]/[sin(x/2)-cos(x/2)][tan(x/2)-
cot(x/2)]
={[sin^(x/2)-2sin(x/2)cos(x/2)+cos^(x/2)-sin^(x/2)-2sin(x/2)cos(x/2)-cos^(x/2)^]/[sin^(x/2)-cos^(x/2)]}(tan(x/2)-1/tan(x/2)}
=2tanx[tan^(x/2)-1]/tan(x/2)
=-4
当x∈[nπ,nπ+π/2]时: sin(x/2)<cos(x/2)
|sin(x/2)-cos(x/2)|=cos(x/2)-sin(x/2)
可得原式=4
12解:
若sin(π/6-a)=1/3
则cos(2π/3+2a)=-7/9
cos(2π/3+2a)=cos(π-π/3+2a)=-cos(-π/3+2a)
=-cos(π/3-2a)=-cos[2(π/6-a)]
=-[1-2×sin^(π/6-a)]
=-[1-2×(1/9)]
=-7/9